1 Fig. 6 shows the region enclosed by the curve $y=\left(1+2 x^{2}\right)^{\frac{1}{3}}$ and the line $y=2$.

Fig. 6
This region is rotated about the y-axis. Find the volume of revolution formed, giving your answer as a multiple of π.

2 Fig. 7a shows the curve with the parametric equations

$$
x=2 \cos \theta, \quad y=\sin 2 \theta, \quad-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2} .
$$

The curve meets the x-axis at O and $\mathrm{P} . \mathrm{Q}$ and R are turning points on the curve. The scales on the axes are the same.

Fig. 7a
(i) State, with their coordinates, the points on the curve for which $\theta=-\frac{\pi}{2}, \theta=0$ and $\theta=\frac{\pi}{2}$.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ. Hence find the gradient of the curve when $\theta=\frac{\pi}{2}$, and verify that the two tangents to the curve at the origin meet at right angles.
(iii) Find the exact coordinates of the turning point Q .

When the curve is rotated about the x-axis, it forms a paperweight shape, as shown in Fig. 7b.

Fig. 7b
(iv) Express $\sin ^{2} \theta$ in terms of x. Hence show that the cartesian equation of the curve is $y^{2}=x^{2}\left(1-\frac{1}{4} x^{2}\right)$.
(v) Find the volume of the paperweight shape.

3 Fig. 6 shows the region enclosed by part of the curve $y=2 x^{2}$, the straight line $x+y=3$, and the y-axis. The curve and the straight line meet at $\mathrm{P}(1,2)$.

Fig. 6

The shaded region is rotated through 360° about the y-axis. Find, in terms of π, the volume of the solid of revolution formed.
[You may use the formula $V=\frac{1}{3} \pi r^{2} h$ for the volume of a cone.]

4 The part of the curve $y=4-x^{2}$ that is above the x-axis is rotated about the y-axis. This is shown in Fig. 4.

Find the volume of revolution produced, giving your answer in terms of π.

Fig. 4

5 Fig. 2 shows the curve $y=\sqrt{1+\mathrm{e}^{2 x}}$.

Fig. 2

The region bounded by the curve, the x-axis, the y-axis and the line $x=1$ is rotated through 360° about the x-axis.

Show that the volume of the solid of revolution produced is $\frac{1}{2} \pi\left(1+e^{2}\right)$.

6 Fig. 3 shows the curve $y=\ln x$ and part of the line $y=2$.

Fig. 3
The shaded region is rotated through 360° about the y-axis.
(i) Show that the volume of the solid of revolution formed is given by $\int_{0}^{2} \pi \mathrm{e}^{2 y} \mathrm{~d} y$.
(ii) Evaluate this, leaving your answer in an exact form.

7
(i) Show that $\int x \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{1}{4} \mathrm{e}^{-2 x}(1+2 x)+c$.
[3]

A vase is made in the shape of the volume of revolution of the curve $y=x^{1 / 2} \mathrm{e}^{-x}$ about the x-axis between $x=0$ and $x=2$ (see Fig. 5).

Fig. 5
(ii) Show that this volume of revolution is $\frac{1}{4} \pi\left(\begin{array}{ll}1 & \frac{5}{\mathrm{e}^{4}}\end{array}\right)$.

8 Fig. 4 shows a sketch of the region enclosed by the curve $.11+e-2 x$, the x-axis, the y-axis and the line $\boldsymbol{x}=1$.

Fig. 4
Find the volume of the solid generated when this region is rotated through 360° about the \boldsymbol{x}-axis Give your answer in an exact form.

